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Abstract

The treatability of seven wastewater samples generated by a textile digital printing industry

was evaluated by employing 1) anammox-based processes for nitrogen removal 2) microal-

gae (Chlorella vulgaris) for nutrient uptake and biomass production 3) white-rot fungi (Pleur-

otus ostreatus and Phanerochaete chrysosporium) for decolorization and laccase activity.

The biodegradative potential of each type of organism was determined in batch tests and

correlated with the main characteristics of the textile wastewaters through statistical analy-

ses. The maximum specific anammox activity ranged between 0.1 and 0.2 g N g VSS-1 d-1

depending on the sample of wastewater; the photosynthetic efficiency of the microalgae

decreased up to 50% during the first 24 hours of contact with the textile wastewaters, but it

improved from then on; Pleurotus ostreatus synthetized laccases and removed between

20–62% of the colour after 14 days, while the enzymatic activity of Phanerochaete chrysos-

porium was inhibited. Overall, the findings suggest that all microbes have great potential for

the treatment and valorisation of textile wastewater after tailored adaptation phases. Yet,

the depurative efficiency can be probably enhanced by combining the different processes in

sequence.

Introduction

The textile sector has a severe environmental impact, consuming 79 billion cubic metres of

water and emitting more than 1.7 million tons of CO2 in the EU [1]. The amount of water con-

sumed, and consequently the polluted water released, is strictly dependent on the requirement

of the different stages of the production chain, type of fabric produced and machines utilized

[2]. The dyeing and printing steps are of major concern as they generate wastewaters rich in

organic pollutants (as chemical oxygen demand, COD), nutrients (nitrogen and phosphorus),

heavy metals, dyestuffs, catalytic chemicals, and cleaning solvents, which are extremely

toxic for the environment and human beings [3]. The implementation of the digital textile

printing (DTP) technology in several European companies has substantially decreased the
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environmental impact of the textile sector, whilst enhancing the quality level in a wide range of

fabrics. Compared to conventional processes, DTP consumes less water and energy, emits less

CO2, and requires less chemicals [4–6]. Nevertheless, the ink-jet printing procedure includes a

pre-impregnation of the fabrics in urea, which increases the load of organic nitrogen (up to

600 mg N L-1) in the discharged wastewater.

Several physicochemical, biological, and combined treatment processes have been exten-

sively used for the removal of pollutants in textile wastewaters (TW) [7,8]. However, the best

available technologies, including adsorption on activated carbon, addition of iron salts to the

activated sludge, and ozonation, are expensive and/or energy intensive [9]. On the other hand,

the conventional process for biological nitrogen removal of such N-rich wastewater needs

intensive aeration and organic substrates, with the drawback of further consumption of

energy, production of large amounts of sludge and massive emission of green-house gases. In

this light, the development of novel cost-effective bioremediation technology is essential to

improve the environmental sustainability of the textile industry.

Recently, the completely autotrophic nitrogen removal (ANR) process emerged as an effec-

tive alternative for the treatment of textile wastewater from DTP companies [10]. ANR relies

on the combined activity of the ammonium oxidizing bacteria (AOB), which convert part of

the ammonia into nitrite, with the anaerobic ammonium oxidation (anammox) bacteria

(AMX) that transform the remaining ammonia and nitrite into N2 and water. The process has

no demand of organic carbon and lower demand of oxygen compared to conventional biologi-

cal nutrient removal processes, and it is thus a more cost effective and environmentally

friendly alternative [11,12]. Surveys carried out in 20 years of application of ANR for the treat-

ment of several types of wastewaters show that the main drawback of this process is that the

AMX are extremely sensitive to operational and environmental conditions [13–15]. Therefore,

tailored studies focusing on the treatability of TW by AMX are needed to assess its applicability

to the textile sector [10].

Microalgae and cyanobacteria have received much attention for the treatment and valorisa-

tion of domestic and industrial wastewater, including textile wastewater [16–19]. Microalgae

can remediate TWs by uptaking nutrients (nitrogen and phosphorus) and heavy metals, but

also by removing colour through bioadsorption, biodegradation and bioconversion [20–22].

In addition, the microalgal biomass produced during the process can be exploited as a source

of polysaccharides, lipids, pigments, proteins, bioactive compounds [23]. Colour removal effi-

ciency by microalgae and cyanobacteria can reach up to 95% according to the species and cel-

lular state of the microalgae and to the molecular structure of the dye [24]. Chlorella vulgaris,
Chlorella pyrenoidosa, Scenedesmus quadricauda, Oscillatoria curviceps have been reported to

efficiently biodegrade and decolorize several types of azo dyes, including supranol red, acid

black, Orange II, Remazol Brilliant Blue [19,25,26]. Colour and ammonia removal by C. vulga-
ris in a high rate algae pond (HRAP) fed on undiluted TW reached up to 47% and 45% respec-

tively after 12 days of cultivation in batch [19]. Nonetheless, few experiences are reported

about long term cultivation of microalgae in raw TW and mostly concern the association of

microalgae with other physicochemical or microbial processes [27–29].

The application of white-rot fungi has great potential for cost-effective decolorization of

textile wastewaters. These fungi synthetize several intra and extracellular ligninolytic enzymes

including laccase (LC), Mn-peroxidase (MnP) and lignin-peroxidase (LiP), which allow the

degradation of several complex organics, such as azo-dyes [30]. In optimal growing conditions,

immobilized Phanerochaete chrysosporium and Pleurotus ostreatus have been reported to effi-

ciently decolorize (80–100% removal) solutions with a broad range of acidic and reactive dyes

(25–200 ppm) such as Acid Red 88, Reactive Black 5 and Reactive Orange 16 and Orange II

[31–33]. Nevertheless, the physicochemical conditions, especially pH, of the TW might impair
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the enzymatic pathways. This is probably the reason why studies dealing with fungal treatment

of real TWs (not model solutions) are still scarce [34].

As stated above, anammox bacteria, microalgae and fungi have great bioremediation poten-

tial, though their activity depends on the characteristics of the TWs. Even effluents of the same

industry face changes in type and concentration of recalcitrant and toxic compounds accord-

ing to seasons, fashion markets, type of fabrics and finished textile products. Therefore, to con-

sider these microbes for the development of a solid and reliable bioremediation process, it is

essential to assess how the variability of the TW composition impacts their growth and activity.

The goal of the present study is to assess the potential application of processes based on ana-

mmox bacteria, microalgae, and fungi for the treatment of a real TW, derived by a textile digi-

tal printing company. To accomplish such scope: 1) the physicochemical composition of

textile wastewater samples has been monitored for two months to assess its variability; 2) the

performance and efficiency of the biological processes carried out by the three groups were

evaluated and compared; 3) the physicochemical characteristics of the tested wastewater sam-

ples were correlated with the activities of each type of organism through statistical tools.

Materials and methods

Wastewater origin and sampling

Wastewater samples were collected in a textile company, which is placed in Northern Italy

(Stamperia di Cassina Rizzardi Spa, Como). The company has a printing capacity of 9,000,000

m year-1, operates 28 ink-jet printers and discharges more than 430,000 m3 year-1 of wastewa-

ter. All the effluents of the manufacturing chain are collected in an equalization tank (1200

m3) where the wastewater is stored and eventually discharged into the sewage network (1000

m3 day-1). An automatic sampler takes 200 mL every 20 m3 discharged to allow quality con-

trols of the effluent. During the wastewater sampling campaign, daily aliquots were collected

within a week and mixed to obtain a single, homogeneous and representative weekly sample

(1.4 L, n = 7, TW1-TW7). Part of the composite sample (100 mL) was immediately analysed

for its physicochemical properties while the rest was stored at -20˚C until the execution of the

parallel bioremediation essays with the three organisms.

Analytical methods

Total and volatile suspended solids (TSS and VSS) in the wastewater samples were determined

in duplicate according to Standard Methods [35]. Conductivity and pH were measured by a

portable probe (XS PC 510 Eutech Instruments, Stevensville, MI, USA). Concentrations of

NH4
+-N, NO3

—N, NO2
—N and total nitrogen (TN-N), orthophosphate phosphorus (PO4

-3-P)

and soluble COD (sCOD) were determined on filtered (0.45 μm) TW samples by spectropho-

tometric test kits (DR6000TM UV VIS Spectrophotometer, Hach Lange LT200 Dry thermo-

stat, Germany). COD of not filtered samples were also determined. The concentration of free

NH3-N was computed from the NH4
+-N according to Anthonisen et al. [36].

Colour characterization was based on the optical density spectrum of filtered samples in a 1

cm cuvette by a UV-spectrophotometer (Hach-Lange, DR6000TM UV VIS Spectrophotome-

ter), while the total colour was estimated by summing the optical density at 445 nm, 540 nm,

660 nm as described by Pala et al. [37]. Turbidity was measured by the optical density at 780

nm wavelength in a 5 cm cuvette. Cu, Cr, Cd, Pb and Ni concentrations in the TW were deter-

mined by Graphite Furnace Atomic Absorption Spectrometry (GFAAS; SIMAA 6000, Perki-

nElmer) (IRSA-CNR: 3250, 3150,3220), while Zn, K, Mg, Ca, Si, Fe, Na, Mn, Mo and Al by

Inductively Coupled Plasma-Optical Emission Spectroscope (ICP-OES; Optima 7000 DV Per-

kinElmer, Software control WinLab) (IRSA-CNR 4020 and 3030).
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Bioremediation tests

Anammox bioassay. Short term batch inhibition tests lasting about two/three days were

performed to quantify the potential reduction of the AMX activity upon exposure to the seven

TW samples. The maximum specific anammox activity (SAAmax) of granular biomass, which

was provided by PAQUES (The Netherlands) was determined by a manometric procedure

[38]. For this purpose, OxiTopControl equipment (WTW, Germany) consisting in air-tight

closed bottles with a volume of approximately 335 mL, equipped with a pressure detector for

data acquisition and storage were implemented. Each bottle includes two air-tight rubber

septa for the injection of substrates, regulation of pressure, and sampling of the medium (S1

Fig). All tests were carried out in duplicate by inoculating 5.12 g (wet weight, 0.3 g volatile sol-

ids) of anammox granules and 220 mL of wastewater. Control tests, in which the wastewater

was replaced by an optimal substratum for the growth of anammox bacteria (SM) [39] were

also conducted. Once set up, the bottles were flushed with a mixture of N2 and CO2 gas to

remove the oxygen, then incubated at 30˚C and constantly stirred (100 rpm).

The biological process taking place inside the bottle was estimated by monitoring the over-

pressure increase due to the release of N2 gas after injections (spikes) of a solution containing

50 mg L-1 of nitrite, which is the limiting substrate for the activity of the anammox bacteria in

the TW samples. One spike (spike 1) was performed after one hour of incubation, while a sec-

ond one (spike 2) was performed after 2 days from inoculation.

The pressure data collected after each injection were then converted into moles of nitrogen

produced using the ideal gas equation as follows:

nN2
tð Þ ¼

PðtÞ�VHS

R� T

Where VHS is the volume of the gaseous phase (L) and R is the ideal gas coefficient (atm L

mol-1 K-1), T is the temperature (K) and P(t) is the pressure (atm) at time t (h).

The nN2
ðtÞ trend shows an initial positive slope (m1) representing the nitrogen gas produc-

tion by AMX (and potentially denitrifying bacteria, carrying out the conversion of nitrite and

nitrate into N2). Once nitrite is consumed, the curve flattens, evidencing a reduced slope (m2)

which is due to the nitrogen gas production rate by the sole denitrifying bacteria on nitrate.

Therefore, the nitrogen gas produced by the sole AMX is given by:

SSAmax g N2 � N
g VS d

� �

¼
m1 � m2ð Þ mol

h

� �
� 28

g N2

mol

� �

MVS½g VS�
� 24

h
d

� �

Where MVS is the mass of volatile solids is the granular inoculum.

Microalgal bioassay. This assay was carried out to evaluate the growth of microalgae on

the TW samples. A pure culture of Chlorella vulgaris (211-11j from University of Goettingen,

previously grown on Basal Medium at the laboratory of Istituto Lazzaro Spallanzani, Italy) was

used as inoculum for cultivation batch tests (duplicate). The microalgal culture was mildly cen-

trifuged to remove the supernatant, while the resulting algal biomass pellet was resuspended in

0.2 L of each TW sample and in 0.2 L of Modified Bold’s Basal Medium (MBBM) [40] (with

200 mg N L-1 of ammonium as the sole source of nitrogen (control test) to obtain an initial

absorbance of 0.13 ± 0.03 at 680 nm wavelength. No pH adjustment was done because Chlo-
rella sp. can grow in a wide range of pH (4–10) [41]. All tests were conducted for 15 days at

room temperature (22 ± 2˚C) using 0.5 L baffled flasks, continuously mixed by an orbital

shaker (IKA, KS 501, Staufen Germany) rotating at 120 rpm. Light was provided by 4 Fluora

lamps (36 W) at 200 μmol m–2 s–1 PAR, with light/dark cycles:12 h/12 h.
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Total suspended solids (TSS) and volatile suspended solids (VSS), pH and the concentra-

tion of N compounds in the microalgal suspensions were measured weekly with the same pro-

cedures described above for the TW samples.

Photosynthetic activity of the cultures was assessed by phyto-PAM II (Heinz Walz GmbH,

Effeltrich, Germany), which measures the photosynthetic efficiency (Fv/Fm) that represents

the quantum efficiency of Photo-system II [42]. This method, which is usually applied to inves-

tigate the stress factors (e.g. photoinhibition, light limitation, temperature stress) affecting the

photosynthetic rate of algal cultures [43], was used here to assess and compare the physiologi-

cal state of the microalgae grown on textile wastewater and control medium. This parameter

was determined according to Marazzi et al. [17]. Microalgal suspensions were diluted in order

to get an absorbance of 0.1 at 680 nm and adapted to dark conditions for 20 min prior to mea-

surement. The photosynthetic efficiency was evaluated at the beginning of the tests, after 1, 48

and 72 h, 1 and 2 weeks and compared with the control as follows:

Fv=Fm% ¼
ðFv=Fm C � Fv=Fm TWÞ

Fv=Fm C
� 100

Where C is the control and TW is the textile wastewater sample.

Recovery time was defined as the time needed to the microalgae to reach a photosynthetic

activity similar to control: Fv/Fm %> 75. The photosynthetic activity at the different times

was linearly interpolated and the recovery time was calculated as the smaller time with a Fv/

Fm% higher than 75.

The average efficiency of algal production was calculated as follows:

ZVSS ¼
VSST0 � VSSTe

VSST0

� 100

Where VSST0 and VSSTe are the VSS concentration measured at the beginning and at the

end of the batch test. Similar equations were used to calculate the average efficiency for the

removal ammonium (ηNH4
+-N), and total nitrogen (ηTN-N), and for the production of total

suspended solids (ηTSS) and absorbance (ηABS).

The cellular state and size were also visualized by an optical microscope (B 350, Optika,

Italy) under the 40x objective. Images were captured by a camera installed on the microscope

and then processed by ImageJ (https://imagej.nih.gov/ij/).

Fungi bioassay. The scope of this bioassay was to examine the fungi decolorization poten-

tial on the seven TW samples. Pleurotus ostreatus ATCC 96997 (ATCC: American Type Cul-

ture Collection, Manassa, USA) and Phanaerochaete chrysosporiumDSM 9620 (DSMZ:

Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH, Braunschweig, Ger-

many) were maintained on 5 cm plates containing PDA (Potato Dextrose Agar) medium (For-

medium, England) as reported by Musatti et al. [44] until further use. For the bioassay, a

quarter (around 5 cm2) of a pre-grown solid culture (not older than 1 months), taken off with

a sterile scalpel, was first inoculated in 500 mL Erlenmeyer flasks containing 100 mL of liquid

MEB (Malt Extract Broth) medium having the following composition (g L-1): glucose (Duch-

efa, Haarlem, the Netherlands) 20, soybean peptone (Costantino, Favria, Italy) 1, malt extract

(Costantino) 20, distilled water to 1 L, pH 5.8. Flasks were incubated at 25˚C on an alternative

shaker (40 spm, 4 cm run) in the dark for 5 days to obtain a visible growth (presence of

pellets).

Pre-cultures grown on glucose were then employed as inoculum (10% v/v) in 500 mL

Erlenmeyer flask containing 100 mL of each of the TW effluents (pH was reduced to 7 with 1

M HCl), added with 1 g L-1 yeast extract (Costantino) and 20 g L-1 glucose to support fungal
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growth and enzymatic synthesis. Cultures were incubated at 25˚C on an alternative shaker (40

spm, 4 cm run) in the dark up to 14 days.

Culture pH, effluent colour removal (%) and laccase activity (IU L-1) were monitored after

5–10 and 14 days [45]. At 14 days, mycelia were separated from the culture supernatants by fil-

tration and dried at 105˚C for 24 h to determine the total solid content (g L-1). Effluent colour

removal was determined spectrophotometrically by summing the optical densities at 445 nm,

540 nm and 660 nm and calculating the colour removal efficiency with respect to t0 [37]. Lac-

case was determined by oxidation of 2,20 -azino-bis-(3- ethylbenzothiazoline)-6-sulfonic acid

diammonium salt (ABTS, Fluka, Sigma Life Science, Steinheim, Germany) (ε420: 36000 mol-

1cm-1). Qualitative laccase activity was determined as reported by More et al. [46] with some

modifications. Briefly, 200 μL of each sample were poured in wells made on (5x5 cm) plates

containing 15 mL of 0.1 M sodium acetate buffer pH 4.5 added with 0.5 mM ABTS solidified

with agarose (0.05 g L-1). Plates were incubated at 37˚C for 30 min and the development of an

intense bluish-green colour around the wells was considered as a positive test for laccase

activity.

Samples showing positive response in qualitative trials were then subjected to laccase uanti-

fication. Trials were performed in 96-well plates, applying the procedure of Li et al. [45] with

some modifications. Each well was filled with the following solutions in the ratio 1:1:1 (in vol-

ume): i) sample properly diluted, iii) 0.1 M sodium acetate buffer pH 5.0, iii) 0.5 mM ABTS in

the same acetate buffer. Plates were incubated at 37˚C for 10 min in a microplate spectropho-

tometer (MicroWave RS2, Biotek, USA) and Gene5 software (Biotek, USA) and the increase of

absorbance monitored at 420 nm. The enzyme activity was expressed in terms of International

Units (1 IU = 1 μmmol ABTS oxidized per min).

Statistical methods

All statistical analyses were performed using R project software [47]. Principal Component

Analysis (PCA) was used to evaluate the correlations among the physicochemical characteris-

tics of the TWs. PCA was conducted using the function PCA from the “FactoMineR” package

[48].

The temporal trends of microalgae (VSS) and fungi (Colour) cultivations were analysed by

means of Multiple Linear Regression (MLR). Time was modelled using a polynomial equation

of second order while the impact of diverse characteristics of the TW samples were modelled

as their interaction effect with temporal trends of the targeted organisms. The characteristics

of the TWs considered in this analysis were: COD, colour, turbidity, concentration of TN-N,

NH4
+-N, VSS, metals (Fe, Zn, Ni, Cu, Cr, K, Mg, Ca) and a metalloid (Si). An intercept term

representing the value of the dependent variable in the different samples was included in all

models to properly represent the initial conditions. The characteristics of the TW samples

were considered separately, because the sample size did not allow to fit more complex models

while avoiding overfitting. Alternative models (Table 1) were compared by the Akaike

Table 1. Formulas used in the multiple linear regression models.

Number Name Function

1 Time y = a × ytw + poly(Time)

2 Wastewater ID y = a × ytw + poly(Time) + poly(Time): Wastewater ID

3 TW y y = a × ytw + poly(Time) + poly(Time): x

Briefly, x indicates the characteristics of the TW samples, y denotes the response variable, ytw is the value of the

response variable in the TW samples and Wastewater ID identifies a 7 levels categorical variable representing the

different TW samples. All the polynomials used were second order equations; interaction effects are denoted by ‘:’.

https://doi.org/10.1371/journal.pone.0247452.t001
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Information Criterion, corrected for small sample size (AICc) calculated via the aictab func-

tion in the “AICcmodavg” package [49]. The difference between the model AICc and the mini-

mum AICc was used to choose the best-fitting model, considering that the model with the

lowest AICc generally provides the best description of the data. The characteristics of the tex-

tile wastewater samples were deemed to be relevant if the respective model AICc were smaller

than the AICc of the model that consider only Time as independent variable and fall within 4

AICc units of the model exhibiting the lowest AICc value [50].

The response recovery time, ηNH4
+-N, ηTSS and ηVSS (for microalgae), laccase concentra-

tion, biomass dry weight and colour removal (for fungi), spike (for AMX) to the same influent

characteristics used for MLR was evaluated using Spearman Rank Correlation. Each metric

was separately correlated to each TW sample characteristic and significance (p-value<0.05)

was calculated for each correlation analysis separately.

During the anammox activity tests, two-ways analyses of variance (ANOVA) were also per-

formed to establish whether the physicochemical characteristics of the TW samples and the

number of spikes of nitrite impacted significantly the SAAmax. Significance level was set at p-
values lower than 0.05.

Results and discussion

Wastewater characterization

The main physicochemical parameters of the wastewater samples are reported and compared

with those of the synthetic media used in the microbial assays in Table 2. The values are in

agreement with those previously reported for this type of industrial effluents [10]. The highest

variability was detected for turbidity and suspended solids. The concentration of total nitrogen

and free ammonia varied among samples, while the concentration of ammoniacal nitrogen was

quite constant, and the presence of nitrite and nitrate was negligible. As the inorganic nitrogen

concentration was constant, the variation of the total nitrogen concentration derived by the

organic nitrogen compounds, most probably urea, which is a main reagent of the ink-jet print-

ing process. Likely, the urea demand of the fabric production changed during the sampling

campaign causing variations in the concentration of total nitrogen in the wastewater. Shifts of

the total nitrogen concentration did affect also the sCOD/N ratio, which ranged between 1.9

and 3.1. High values of such ratio can have severe impact on the anammox reaction, impairing

its applicability in the treatment of TW [51]. Fluctuations of the TW composition cannot be

avoided, as these are strictly dependent on the manufacturing activity and other types of waste-

waters, not linked to the ink-jet printing processes, that are conveyed into the equalization tank.

Therefore, such variability should be considered when selecting the treatment process.

The distribution of metals and metalloids in the wastewater samples is reported and com-

pared with that of the synthetic media in Table 3. Metal contamination in textile wastewater

derives from dyes and textile auxiliaries used in the manufacturing chain, depending in their

turn on the production requirements. High concentrations of As, Cd, Zn, Cr, Pb, and Hg are

hazardous for public health and for the environment [52]. The concentration values of most of

the heavy metals and trace elements were quite heterogeneous among samples, with coeffi-

cients of variation (CV) mostly over 10%. In the collected TW samples, the concentration val-

ues of Pb and Cd were under the detection limit, while those of Cr (0.03 mg L-1) and Zn (0.08

mg L-1) were within the expected range for this type of wastewater [2,53]. As for colour, similar

spectra of absorbance could be observed in all wastewater samples (green/cyano), with the

exception of sample 1 (violet/purple).

PCA results (Fig 1) demonstrated that the total variance (60.7%) of the physicochemical

wastewater characteristics is explained by the first two axis: 33.4% by the first principal
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component and 27.3% by the second one. The first principal component is positively corre-

lated with the concentrations of Mg, Ca, Na, TSS, as well as with the values of COD, with tur-

bidity and colour. The second principal component correlates positively with the

concentration values of Si, Fe, Zn, Cr and PO4
3—P and negatively with the concentrations of

Ni. The plots of the two first principal components suggested high orthogonality between the

concentration of the major metals, while other elements showed smaller ranges of variation

and were not associated with the first two principal components. Such distribution would indi-

cate that the contaminants grouped in the two principal components derive from the same

sources within the textile process, but this could be confirmed only by segregating the waste-

waters from each process and analysing them, which is out of the scope of the present study.

Anammox bioassay

Fig 2 summarizes the maximum specific anammox activities (SAAmax) determined in all short

term tests after each injection of nitrite solution. SAAmax ranged between 0.06 and 0.09 gN

gVS-1 d-1 after the first spike, but it doubled in most samples after the second one (ranging

between 0.09 and 0.19 gN gVS-1 d-1), except for TW1, TW4 and TW7, where the increase of

the activity was more modest. The observed SAAmax of the control was low compared to those

reported for similar inocula [54]. This suggests that the granular biomass in the inoculum was

poorly active possibly due to stressing operational procedures during transportation and

Table 2. Main characteristic of the synthetic media used in the control tests in the anammox (SM) and microalgae (BBM) assays, and of the seven textile wastewater

(TW) samples.

ID pH Conductivity

(mS cm-1)

Turbidity

(FAU)

TN-N

(mg L-1)

NH4
+-N

(mg L-1)

NH3-N

(mg L-1)

PO4
3—P

(mg L-1)

COD

(mg L-1)

sCOD

(mg L-1)

sCOD/

N

TSS

(mg L-

1)

VSS

(mg L-

1)

Colour []

SM 7.7 4 NA 330 210 8 5.6 NA 78 4.2 NA NA NA

MBBM 7.2 2.44 NA 200 200 1.8 53.2 NA 80 2.5 NA NA NA

TW_1 8.7 1.9 228 190 163 27 1.9 874 590 3.1 220 173 0.29

(purple)

TW_2 8.4 3.23 105 181 168 16 2.0 708 472 2.6 118 103 0.174

(green/

cyano)

TW_3 8.7 2.97 92 291 170 28 2.0 794 556 1.9 115 90 0.245

(green/

cyano)

TW_4 8.6 2.8 71 243 182 27 1.9 802 587 2.4 100 77 0.232

(green/

cyano)

TW_5 8.5 2.19 60 145 139 15 1.9 696 538 3.7 97 88 0.139

(green/

cyano)

TW_6 8.3 2.64 134 169 150 12 1.6 858 532 3.1 115 85 0.182

(green/

cyano)

TW_7 8.6 2.53 79 156 155 21 2.0 862 454 2.9 90 78 0.237

(green/

cyano)

Mean 8.5 2.61 110 196 161 21 1.9 799 524 2.8 122 99 NA

Standard

deviation

0.1 0.45 58 52 14 7 0.1 73 51 0.6 44 34 NA

CV (%) 2 17 53 27 9 33 5 9 10 20.5 36 34 NA

NA = not available.

https://doi.org/10.1371/journal.pone.0247452.t002
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storage. The increase in SAAmax from the first to the second spike (p-values<0.001; two-way

ANOVA) indicates that the test conditions were adequate and favoured the recovery of the

anammox bacteria activity. Nonetheless, all SAAmax were lower than those reported previously

Table 3. Distribution of chemical elements in the synthetic media used in the control tests for anammox (SM) and microalgae (BBM) assays, and in the seven textile

wastewater (TW) samples.

ID K (mg

L-1)

Mg (mg

L-1)

Ca (mg

L-1)

Si (mg

L-1)

Fe (mg

L-1)

Na (mg

L-1)

Zn (mg

L-1)

Mn (mg

L-1)

Mo� (mg

L-1)

Al (mg

L-1)

Cr (μg

L-1)

Ni (μg

L-1)

Pb� (μg

L-1)

Cu (μg

L-1)

Cd� (μg

L-1)

SM 7.2 10.2 42.3 ND 2.2 ND 0.12 0.35 0.02 ND ND 70 ND 80 ND

MBBM 88 7.4 5.4 0.23 0.05 78 0.01 0.07 0.03 ND ND ND ND 4 ND

TW _1 4.6 8.1 37.9 2.21 0.08 280 0.09 0.012 0.001 0.03 29.0 2.2 0.045 25.0 0.001

TW _2 3.5 4.3 18.0 9.04 0.10 228 0.08 0.012 0.001 0.03 43.4 1.7 0.045 66.4 0.001

TW _3 4.3 6.9 31.3 3.83 0.16 302 0.11 0.016 0.001 0.03 94.3 2.1 0.045 29.6 0.001

TW _4 2.6 6.2 31.2 0.11 0.04 210 0.05 0.007 0.001 0.03 11.4 14.2 0.045 17.9 0.001

TW _5 3.9 6.7 31.0 2.15 0.06 247 0.06 0.013 0.001 0.03 24.3 9.2 0.045 34.2 0.001

TW _6 4.7 8.1 35.2 1.55 0.08 278 0.07 0.016 0.001 0.03 15.2 7.4 0.045 20.5 0.001

TW _7 3.4 6.8 31.5 0.67 0.06 259 0.08 0.011 0.001 0.03 19.7 5.4 0.045 19.3 0.001

Mean 3.9 6.7 30.9 2.79 0.08 258 0.08 0.012 NA 0.03 33.9 6.0 NA 30.4 NA

Standard

deviation

0.7 1.3 6.3 3.00 0.04 32 0.02 0.003 NA. 0.00 28.6 4.6 NA. 16.9 NA.

CV (%) 19.2 19.1 20.3 107.48 45.96 12 22.78 24.95 NA 7.35 84.4 76.3 NA 55.7 NA

ND = Value under detection limits.

NA = not available.

https://doi.org/10.1371/journal.pone.0247452.t003

Fig 1. Principal component analysis plot of the physicochemical parameters (arrows) of the seven textile

wastewater samples (black dots).

https://doi.org/10.1371/journal.pone.0247452.g001
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in comparable assays (0.1–0.4 g N g VS-1 d-1), and in other research focusing on anammox

activity in various types of synthetic and industrial wastewaters, such as digestate [10,55].

Considering the chemical composition of the TW samples, the low SAAmax activity could

not be attributed to the levels of heavy metals and salinity, because all values were well below

the IC50 reported in the literature [56,57]. In fact, the statistical analyses revealed that the SAA-
max was positively correlated with the concentration of Si (ρ = 083, p-value = 0.021) and Cu (ρ
= 0.92, p-value = 0.03). Indeed, metals, at low concentration, are fundamental for the metabo-

lisms of anammox, being components of many enzymes and co-enzymes, such as the nitrite

oxidoreductase and nitrite reductase [58].

In addition, the suboptimal sCOD/N ratio (~3) might have contributed to limit the activity

of the anammox bacteria by favouring denitrifying bacteria [51] as observed in a long term

operation of an PN-anammox sequencing batch reactor, which was fed on textile wastewater

taken from the same company [59], or because of the presence of organic inhibitory substances

in the oxidizable fraction. Indeed, the statistical analyses revealed that the SAAmax was nega-

tively correlated with COD (ρ = -076; p-value = 0.049). In real applications a preliminary aero-

bic treatment of the wastewater is required for partial nitritation; this would also decrease

sCOD, due to the activity of heterotrophic bacteria, and would probably improve the perfor-

mances of the downstream anammox process.

In general, the results of this bioassay suggest that some inhibition of the AMX should be

expected while processing TW, which may vary depending on the TW characteristics. We

should observe that the inhibition response gave only a partial information, as this was referred

to short term exposure; tests in a continuous flow system would be more representative of the

real biomass activity.

Microalgal bioassay

Table 4 summarizes the results obtained in the microalgal cultivation tests. The biomass con-

centration increased significantly only in the control tests reaching 400±39 mg VSS L-1 after 15

Fig 2. Average maximum specific anammox activities (SAAmax) achieved after the first (grey bars) and second

(black bars) spike of nitrite in the control test (C) and in assays performed with the seven TWs.

https://doi.org/10.1371/journal.pone.0247452.g002
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days, while the VSS concentrations ranged between 113 and 203 mg L-1 in the textile wastewa-

ter samples. By considering that the VSS of the sole microalgae inoculated in each bottle at T0

was 50 mg L-1, these findings confirm a strong inhibition of Chlorella spp. growth in TW, in

agreement with the results of Lim et al. (2010) [19].

The ammonium removal efficiency (ηNH4
+-N) was higher in the TW tests (74±4%) than in

the control ones (35%). However, as the pH in TW cultures was higher than 9 during the

experimental trial, stripping may have played a relevant role.

Fig 3 shows Fv/Fm values, that estimate the fraction of absorbed quanta used for PS II pho-

tochemistry. At the beginning of the tests, Fv/Fm was 0.55; the value of control (C) started to

increase after 1 h and remained higher than 0.7 during the first week; a small decrease was

observed only at the end of the assay (T15: Fv/Fm = 0.675). The high photosynthetic activity in

the controls demonstrates that the environmental conditions (i.e. light, mixing and

Table 4. Volatile suspended solids (VSS) in the microalgae cultures and ammoniacal nitrogen removal efficiencies

at the end of the tests.

TW T15 VSS (mg L-1) ηNH4-N (%)

1 133 76

2 113 81

3 133 71

4 110 74

5 173 72

6 203 69

7 163 73

C 403 35

https://doi.org/10.1371/journal.pone.0247452.t004

Fig 3. Recovery time representation. Panel C represents the trend of Fv/Fm for the control while the others show the trends of Fv/Fm for each TW, expressed as % of

the control. The red lines indicate the recovery time.

https://doi.org/10.1371/journal.pone.0247452.g003
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temperature) were adequate for the growth of C. vulgaris. In the TW tests, Fv/Fm% decreased

to ~50% after 24 h of contact time in most samples, indicating a physiological stress, but

increased again after 3 days, except for TW5 and TW7, suggesting a gradual acclimatization of

the microalgae to the toxic agents in the wastewaters. The recovery times are also reported in

Fig 3; the shortest one, meaning the fastest adaptation to the textile wastewater, was observed

in TW5 (60 h), while the longest recovery time was measured in TW4 (200 h). The micro-

scopic observation of the microalgal cells during the tests confirmed an immediate shock of

the microalgae once transferred in TW samples. Indeed, after few hours from the inoculation

most of the biomass was characterized by aggregates of dead and live cells (between 33 and

67% smaller than the controls) surrounded by a coloured matrix (Fig 4). Microalgal self-aggre-

gation is a common response to biotic and abiotic stress conditions, but could also be due to

the neutralization of the negative charges on the cell surface by some wastewater component

[60]. However, at the end of the trials, singular large (~3.5 time bigger than the controls)

microalgae and small definite colonies could be observed suggesting a physiological adaptation

of the cells to the TWs. This corroborates previous results showing on the application of a

mixed culture of microalgae (Scenedesmus and Chlorella spp.) for the treatment of TW in a

sequencing batch reactor [28]. Nevertheless, further studies should verify whether during the

recovering/adaptation time the microalgae develop cellular strategies to face the toxicity of the

Fig 4. Images of the microalgal cultures in TW4, TW6, and in the control tests (C) captured the day of

inoculation (T0) and at the end of the tests (T15).

https://doi.org/10.1371/journal.pone.0247452.g004
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TW, or whether other microorganisms, such as autochthonous bacteria in the TW, played a

role in the biodegradation of part of the recalcitrant and hazardous compounds in the TW

facilitating the growth of the microalgae.

In the statistical analyses (Spearman correlation and MLR) the recovery times, ηABS, ηVSS,

ηTSS and ηN-NH4 were compared with all the parameters characterizing the 7 TW samples.

Spearman correlation revealed that total nitrogen concentration was positively correlated with

the recovery time (ρ = 0.89, p-value = 0.012) and negatively with the ηTSS (ρ = -0.79, p-value =

0.036). Likewise, the NH4
+-N concentration was negatively correlated with ηTSS, ηVSS and

positively with the recovery time (ρ = -0.86, p-value = 0.014; ρ = -0.79, p-value = 0.036; ρ =

-0.86 p-value = 0.007, respectively). Solid concentration in the TW seems to have a negative

correlation with ηNH4
+ -N (TSS:ρ = -0.79, p-value = 0.033 and VSS: ρ = -0.81, p-value =

0.027). Overall, these findings suggest that nitrogen had a key role in the biomass production

and adaptation time. On the other side, the negative correlation between the recovery time

and the ηVSS (ρ = -0.86, p-value = 0.014, ρ = -0.82, p-value = 0.023, respectively) confirmed

that longer adaptation time causes less biomass production.

The concentration of VSS in the algal suspensions generally showed an increase, but not in

all the tested TW samples (Fig 5C left panel). MLR analyses highlighted a substantial support

for the model that considers only Time or the interaction between Time and TN-N (AICc dif-

ferences smaller than 4). The differences observed among the tests could be due to the concen-

tration of TN-N in the TWs; the VSS increase was larger for lower concentrations of TN-N in

the influent and became almost negligible for very high total nitrogen concentrations.

Fungi bioassays

Tables 5 and 6 report data related to the biomass concentration (g L-1) at the end of the tests,

culture pH, laccase activity (IU L-1) and colour removal efficiency for the each TW of Pleurotus
ostreatus and Phanerochaete chrysosporium, respectively. P. ostreatus was able to grow in all

wastewater samples with a final concentration ranging between 9.10 and 10.12 g L-1, without

any significant difference among samples. Apart from TW1, the pH at the end of incubation

reached similar levels (3.1–3.2), typical of a fungal culture. Laccase activity was observed after

5 and 10 days of incubation and almost disappeared at day 14 (with the exception of TW1).

The highest values were observed when the strain was cultivated in TW6 and TW7 (396 and

349 IU L-1, respectively). These concentrations were much higher than those reported by An

et al. [61] in a screening assay examining the laccase production of different strains of P.

ostreatus in submerged (SmF) fermentation. In this study, the maximum laccase activities

were evidenced for strain YAASM 0568, with levels ranging from 105.3 to 168.8 IU L-1 after 6

to 8 d, in a medium containing 3 g L-1 lignin as inducer. Nevertheless, straight comparisons

with data in literature are difficult because of discrepancies between fermentation conditions

(i.e. submerged -SmF and solid state -SSF fermentation), origin of the effluent to decolorize,

and pathways of the enzymatic expression of laccase.

Colour removal ranged from 20% (TW5) to a very interesting 62% (TW1); in all the other

tests decolorization was around 40–54%. The moderate and varied colour removal suggests

that the tested Pleurotusmay have been sensitive to undetected compounds present in some

samples, i.e. trace metals and textile auxiliaries that can stimulate and/or inhibit enzymatic

activities. This might also explain the divergences between the colour removal efficiency

observed when using real TW or solution with synthetic dyes [62].

MLR (Fig 5) analyses highlighted that turbidity and initial colour interacted with Time for

the best fitting models. Higher values of turbidity, as well as colour, were associated with

higher colour removal. Laccase, colour removal and biomass growth were all compared with
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the parameters characterizing the 7 TWs. Results showed that colour removal was positively

correlated with the presence of Iron in the textile wastewater samples (ρ = 0.77, p-value =

0.041). Iron, together with Copper, have been already reported to induce the enzymatic activi-

ties correlated to colour removal of cherry waste by in Pleurotus eringii [63].

Different performances emerged in tests inoculated with P. chrysosporium. This strain was

able to grow in all effluents with final biomass concentration ranging between 7.8–10.5 g L-1. A

consequent pH decrease could be observed in the cultures. Nevertheless, laccase enzymatic

activity was never detected and a limited colour removal (10–11%) was evidenced. Kiran et al.

[64] investigated the colour removal performance of four P. chrysosporium strains on a dye

wastewater solution prepared by mixing Reactive Blue, Reactive Violet and Reactive Yellow:

after 6 day of incubation, the decolorization efficiency ranged from 38.9 to 82.9% depending

on the tested strain and on the concentration of synthetic dyes, suggesting that larger quantity

of the dye may cause a slower rate of dye removal; contrarily to results obtained in the present

experimentation, laccase was always found in the range 5–25 IU mL-1. This comparison sug-

gests that P. chrysosporium was able to grow but not to synthetize the enzymatic activity

requested for colour removal.

Laccase production by P. chrysosporium is reported to be highly related to the conditions of cul-

tivation of the fungus, while high biomass did not necessarily lead to high laccase yields [65].

Sedighi et al. [66] highlighted that maximum decolorization of Astrazon Red FBL (87%) and COD

removal (42%) of a textile effluent by P. chrysosporium occurred only when Tween 80 (0.05%, w/v)

was added to the effluent. Other authors advocate the possibility of raising laccase production by

increasing nitrogen concentration or when carbon or sulphur become limiting [65].

MLR analyses confirmed that the decolorization trends were similar among the trials and

the final values depended only on the initial colour values and Time. Pairwise comparisons

between colour removal, biomass growth and the parameters of the tested TW samples showed

that colour removal was positively correlated with VSS (ρ = 0.76, p-value = 0.049), while bio-

mass growth was negatively correlated with Nickel concentration (ρ = 0.79, p-value = 0.048).

The first result can be easily explained by the fact that VSS is directly linked with colour

removal; the more fungus is present, the higher the removal achieved; as regards the second

result, even if Ni is an essential metal, at micromolar concentration it can inhibit the growth of

P. chrysosporium [67].

Fig 5. Temporal trend for the fungi (A: P. ostreatus, B: P. chrysosporium) and algae (C: C. vulgaris) cultivations. The first panels on

the left represent the average trend for each tested TW sample while the other panels represent the effects of the relevant

physicochemical properties identified by the Multiple Linear Regression analyses.

https://doi.org/10.1371/journal.pone.0247452.g005

Table 5. Summary of the results related to P. ostreatus ATCC 96997.

TW Biomass concentration

(g L-1, 14 d)

Culture pH Laccase (IU/L) Colour removal (%)

5 d 10 d 14 d 5 d 10 d 14 d 5 d 10 d 14 d

1 9.10 ± 0.57 4.9 ± 0.14 4.9 ± 0.11 5.39 ± 0.27 136.0 ± 8.5 32.0 ± 4.2 25.0 ± 4.0 29.6 ± 2.3 49.3 ±2.5 62.0 ± 2.4

2 10.07 ± 0.38 7.25 ± 0.21 4.49 ± 0.16 3.15 ± 0.21 126.7 ± 5.0 23.8 ± 2.3 <0.5 28.0 ± 5.1 37.4 ± 5.1 52.7 ± 2.3

3 9.79 ± 0.30 7.11 ± 0.08 4.79 ± 0.14 3.14 ± 0.08 195.0 ± 7.1 193.3 ± 2.4 <0.5 25.1 ± 8.2 38.5 ± 2.3 54.0 ± 1.1

4 10.12 ± 0.18 7.22 ± 0.11 4.10 ± 0.14 3.24 ± 0.17 87.5 ± 3.5 89.4 ± 3.9 <0.5 24.5 ± 4.1 33.3 ± 6.3 43.6 ± 5.4

5 9.56 ± 0.20 7.17 ± 0.08 3.52 ± 0.17 3.14 ± 0.06 190.0 ± 7.1 184.7 ± 6.0 <0.5 28.5 ± 1.4 35.5 ± 5.7 20.2 ± 8.9

6 9.80 ± 0.28 7.16 ± 0.06 3.5 ± 0.07 3.25 ± 0.21 395.6 ± 12.1 376.4 ± 5.1 <0.5 31.3 ± 1.5 51.7 ± 3.0 46.9 ± 3.7

7 9.43 ± 0.17 7.26 ± 0.11 3.34 ± 0.06 3.24 ± 0.13 349.4 ± 16.2 333.9 ± 8.6 <0.5 23.0 ± 3.5 46.3 ± 1.0 40.4 ± 6.0

https://doi.org/10.1371/journal.pone.0247452.t005
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In summary, these results suggest that significant decolorization was observed in all samples

with variable performance depending on the TW samples and fungal strain. However,

P. ostreatus resulted more promising than P. chrysosporium in TW decolorization.

Conclusions

The wastewaters originated by DTP technology showed a significant variability in characteris-

tics. Nonetheless, none of the tested samples showed extreme toxicity effects, which would hin-

der the applicability of the studied bioprocesses. Smoother responses to variable wastewater

characteristics are to be expected in scale up tests and the continuous operation mode should

promote bioadaptation and improve the buffering capacity of the system through the bioreac-

tors retention time.

The treatment performance could be improved by integrating the tested microbes in a

treatment train where fungi would reduce COD and colour, a PN/anammox phase would

reduce the ammoniacal nitrogen, and a final microalgae-based photobioreactor would act as a

finishing step for further nitrogen reduction and to produce biomass with added-value (i.e.

pigment content). The produced pigments could potentially be reused as green ingredients in

the printing process, thus implementing the circular economy principles.

Supporting information
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