

#### **Decentralized innovative treatment of ammonium-rich urban wastewater**

# Lab scale activities



Simone Visigalli – Micol Bellucci

Politecnico di Milano

#### LIFE DeNTreat FINAL EVENT – web meeting

February 24<sup>th</sup>, 2021



**CARIANA** DEPUR









The project has received funding from European Union's LIFE Programme under Grant Agreement LIFE16 ENV/IT/000345



# **PN/Anammox process**





# **Background from preliminary tests**





# **Background from preliminary tests**

#### **Concentrated DTP wastewaters**

- **X** Low removal rates if raw wastewater is **undiluted** (inhibiting compounds)
- Low removal rates if **bCOD / TKN > 2** in the wastewater
- **X** Low removal rates if **NH<sub>4</sub>+-N / TKN < 30%** in the wastewater
- ★ At low NH<sub>4</sub><sup>+</sup>-N / TKN ratios, **urea conversion to NH<sub>4</sub><sup>+</sup>-N** should be promoted
- **X** Ureolysis is the kinetically limiting step: slow  $NH_4^+$ -N production  $\rightarrow$  slow down of AOB activity and NOB may develop

#### Treatability confirmed on equalized effluents



# **Criteria of WW suitability for PN/A**









WW 1 WW 2 Effluent from Final effluent viscose process

WW 3 Final effluent



WW 4 Final effluent (equalized)



WW 5 Final effluent (equalized)





# Physicochemical characterization & manometric batch tests



# **Physicochemical characterization**

|                                 | WW 1 | WW 2 | WW 3 | WW 4  | WW 5  |            |
|---------------------------------|------|------|------|-------|-------|------------|
| рН                              | 8.8  | 8.9  | 9.2  | 9.2   | 7.9   | < 8        |
| Conductivity (mS/cm)            | 1.54 | 0.30 | 2.41 | 2.43  | 1.00  |            |
| COD (mg/L)                      | 380  | 390  | 356  | 971   | 677   |            |
| TN (mg/L)                       | 556  | 527  | 238  | 336   | 217   |            |
| TKN (mg/L)                      | 551  | 526  | 224  | 335   | 216   | > 100 mg/L |
| NH <sub>4</sub> -N (mg/L)       | 41   | 41   | 165  | 17    | 182   |            |
| NO <sub>3</sub> -N (mg/L)       | 4.99 | 1.36 | 13.8 | 1.16  | 0.78  |            |
| NO <sub>2</sub> -N (mg/L)       | 0    | 0    | 0.13 | 0.27  | 0     |            |
| NH <sub>4</sub> -N/TKN (%)      | 7.4  | 7.8  | 73.7 | 5.1   | 84.3  | > 30%      |
| COD/TKN (gO <sub>2</sub> /gTKN) | 0.69 | 0.74 | 1.59 | 2.90  | 3.13  |            |
| PO <sub>4</sub> -P (mg/L)       | 97.2 | 2.5  | 4.4  | 4.2   | 5.8   |            |
| TSS (mg/L)                      | 70.0 | 33.3 | NA   | 200.0 | 186.7 |            |
| VSS (mg/L)                      | 26.7 | 33.3 | NA   | NA    | 170.0 |            |



Activity test evaluates the capability and the rate at which the Anammox granules are removing  $NH_4$  and  $NO_2$  from the solution by measuring the pressure increase due to the production of  $N_2$ .



**DO** = **0**,**0** ppm

The activity test in presence of a wastewater allows evaluating the ability of Anammox biomass to operate in presence of that specific substrate.





The **steepest** part of the curve is known to be addressable to the activity of both Anammox and denitrification, while the **less steep** part can be addressed to the denitrification activity only. At the net of the contribution of denitrifiers, it is possible to assess the sole activity of Anammox biomass in controlled conditions.















# **Manometric batch tests – Main results**

- Initial adaptation of the biomass to the wastewater is needed to increase the SAA.
- ✤ Inhibition was always lower than 50% with respect to the synthetic solution.
- Some wastewaters may show a higher SAA than the synthetic solution.
- ✤ WW 4, in spite of a high concentration of organic nitrogen, could reach a SAA of 0,145 gN/gVS/d.
- The quality of the discharge from the DTP companies varies in time: mild to strong inhibiting components could be present in some of the discharges that can significantly reduce the SAA.



# Lab scale pilot tests





**WW 1** 

**Effluent from** 

viscose process

WW 2 Final effluent Fi



WW 3 Final effluent



**WW 4** 

**Final effluent** 

(equalized)

WW 5 Final effluent (equalized)















# The lab-scale pilot

Cycle





# The lab-scale pilot

- 1: Air recirculation compressor
- 2: Feed pump
- 3: Discharge pump
- 4: Air compressor
- 5: Acid-base dosing pumps
- 6: Acid-base tanks
- 7: Feed tank
- 8: Discharge tank

9: PLC

- 10: SBR reactor
- 11: Gas bag
- 12: Azomix tank
- 13: Overpressure drain tank
- 14: Thermostat
- Gas
- Feed
- Discharge
- Acid-base





| Cycle duration: 6 - 8 hours |                | pH: 7.2 - 7.6      |                    | DO: 0.2 - 0.4 ppm  |           |              |     |
|-----------------------------|----------------|--------------------|--------------------|--------------------|-----------|--------------|-----|
|                             |                | NO <sub>2</sub> -N | NO <sub>3</sub> -N | NH <sub>4</sub> -N | Organic N | <b>ΤΟΤ Ν</b> | COD |
| INFLUENT                    | 50% WW 1       | 8.3                | 6.0                | 77.2               | 261       | 352          | 274 |
|                             | 100% WW 1      | 0.9                | 4.9                | 33.4               | 469       | 508          | 395 |
| EFFLUENT                    | 50% WW 1 (6h)  | 1.9                | 27.9               | 138                | 82        | 250          | 267 |
|                             | 100% WW 1 (6h) | 4.7                | 52.6               | 106                | 39        | 202          | 304 |
|                             | 100% WW 1 (8h) | 1.3                | 98.5               | 2.7                | 48        | 151          | 291 |

**50% WW 1 (6h)**: N-removal efficiency up to 28%

100% WW 1 (6h): N-removal efficiency up to 60%

100% WW 1 (8h): N-removal efficiency up to 70%

A 10% fraction of organic N is not ammonified and looks like it is unbiodegradable





| Cycle duration: 6 hours |           | pH: 7.2 - 7.6      |                    |                    | DO: 0.2 - 0.4 ppm |              |        |
|-------------------------|-----------|--------------------|--------------------|--------------------|-------------------|--------------|--------|
|                         |           | NO <sub>2</sub> -N | NO <sub>3</sub> -N | NH <sub>4</sub> -N | Organic N         | <b>ΤΟΤ Ν</b> | COD    |
| INFLUENT                | 50% WW 2  | 0.50               | 4.11               | 103.75             | 293.64            | 402.00       | 487.50 |
|                         | 100% WW 2 | 0.00               | 1.34               | 17.50              | 709.16            | 728.00       | 891.00 |
| EFFLUENT                | 50% WW 2  | 0.75               | 19.46              | 91.55              | 31.74             | 143.50       | 278.00 |
|                         | 100% WW 2 | 30.06              | 7.37               | 437.50             | 83.08             | 558.00       | 690.50 |

50% WW 2: N-removal efficiency up to 64%

100% WW 2: N-removal efficiency up to 23%

- Inhibitory action of free ammonia
- Time not sufficient for the conversion of N-NH<sub>4</sub>  $\frac{1}{2}$  to N-NO<sub>2</sub>





| Cycle duration: 4 - 3 hours |                | рН: 7.6 - 7.8      |                    | DO: 0.4 - 0.7 ppm  |           |       |     |
|-----------------------------|----------------|--------------------|--------------------|--------------------|-----------|-------|-----|
|                             |                | NO <sub>2</sub> -N | NO <sub>3</sub> -N | NH <sub>4</sub> -N | Organic N | τοτ Ν | COD |
| INFLUENT                    | 100% WW 3      | 0.0                | 0.8                | 196.0              | 23.2      | 220.0 | 329 |
| EFFLUENT                    | 100% WW 3 (4h) | 2.2                | 12.5               | 0.5                | 18.2      | 33.4  | 196 |
|                             | 100% WW 3 (3h) | 2.7                | 27.8               | 0.5                | 5.2       | 36.2  | 198 |

100% WW 3 (4h): N-removal efficiency up to 84.8%
100% WW 3 (3h): N-removal efficiency up to 83.5%

- No adaptation of the biomass needed;
- N-NH<sub>4</sub><sup>+</sup> was completely removed;
- Loading may be increased further.





| Cycle duration: 4 - 3 hours |                | рН: 7.6 - 7.8      |                    | DO: 0.4 - 0.7 ppm  |           |       |      |
|-----------------------------|----------------|--------------------|--------------------|--------------------|-----------|-------|------|
|                             |                | NO <sub>2</sub> -N | NO <sub>3</sub> -N | NH <sub>4</sub> -N | Organic N | τοτ Ν | COD  |
| INFLUENT                    | 100% WW 4      | 0.0                | 2.7                | 273.0              | 35.3      | 311.0 | 1001 |
| EFFLUENT                    | 100% WW 4 (4h) | 3.1                | 10.7               | 17.1               | 21.7      | 52.6  | 537  |
|                             | 100% WW 4 (3h) | 15.6               | 16.3               | 2.7                | 20.5      | 55.1  | 539  |

100% WW 4 (4h): N-removal efficiency up to 83.1%
100% WW 4 (3h): N-removal efficiency up to 82.3%

- No adaptation of the biomass needed;
- N-NH<sub>4</sub><sup>+</sup> was completely removed;
- Loading may be increased further.





# **Quick clinic tests - Summary**





# **Quick clinic tests – Main results**

- For WW 1 and WW 2 a large portion of the organic nitrogen was ammonified: probably some bacterial populations (*Nitrosococcus spp* and *Nitrosomonas ureae*) convert urea into ammonium which is then removed via PN/A.
- No dilution with synthetic solutions was needed for the quick clinic tests in the lab pilot plant for WW 3 and WW 4.
- ◆ Both WW 3 and WW 4 showed a N-removal efficiency higher than 80% → no substantial difference in N-removal has been found by reducing the cycles duration from 4 to 3 hours.
- NLR values were in the range 41-55 mgN/gVSS/d for WW 3 and 58-78 mgN/gVSS/d for WW 4 and may have been increased further.
- The condition "NH<sub>4</sub>-N / TKN > 30%" is excessively conservative, as the process starts even with very low ratios.
- An efficient **pH control** is needed to avoid excessive accumulation of toxic free ammonia.



# **Criteria of WW suitability for PN/A**











![](_page_29_Picture_0.jpeg)

![](_page_29_Figure_2.jpeg)

![](_page_30_Picture_0.jpeg)

![](_page_30_Figure_2.jpeg)

![](_page_31_Picture_0.jpeg)

# WW 5 – Phase 1 - Main results

- Treatability of WW 5 confirmed
- ✓ **NRE** up to 85%
- Ureolysis of the ammonifiable organic nitrogen occurs spontaneously (AOBs convert urea to NH<sub>4</sub>-N)
- Adaptation of the biomass is needed to achieve NRE > 60%: requires dilution at the initial stages
- High variability of wastewater's characteristics slows down the biomass adaptation
- Possible long-term inhibitory effects of DTP wastewater on bacteria consortia

![](_page_32_Picture_0.jpeg)

![](_page_32_Figure_2.jpeg)

![](_page_33_Picture_0.jpeg)

![](_page_33_Figure_2.jpeg)

![](_page_34_Picture_0.jpeg)

# WW 5 – Phase 2 – Main results

#### Treatability of WW 5 confirmed

- With a proper control of DO and pH, NLR and NRR more than doubled with respect to Phase 1
- With a low variability of the influent characteristics, long-term inhibitory effects were not observed
- Steady state conditions were not achieved
- A strict control of the process (T, DO, pH, duration of the phases...) is mandatory to avoid short-term inhibition

![](_page_35_Picture_0.jpeg)

# Thank you

#### Simone Visigalli Micol Bellucci

Piazza Leonardo da Vinci, 32 – Milano (ITA)

<u>simone.visigalli@polimi.it</u> <u>micol.bellucci@polimi.it</u>

#### info@life-dentreat.eu

![](_page_35_Picture_6.jpeg)

![](_page_35_Picture_7.jpeg)

![](_page_35_Picture_8.jpeg)

![](_page_35_Picture_9.jpeg)

![](_page_35_Picture_10.jpeg)

![](_page_35_Picture_11.jpeg)

The project has received funding from European Union's LIFE Programme under Grant Agreement LIFE16 ENV/IT/000345