

LIFE project EN/IT/000345 Decentralized innovative treatment of ammonium-rich urban wastewater

Energy and carbon audit and efficiency in urban water cycle: towards standard methods and verified practice

An integrated assessment for sustainable nitrogen removal from industrial wastewater by decentralized biological processes

Roberto Canziani - Politecnico di Milano, DICA - Sezione Ambientale **Giovanni Bergna -** Lariana Depur S.p.A.

This work has received funding from the Project LIFE ENV/IT/000345 "LifeDeNTreat", with the contribution of the LIFE Programme of the European Union

BACKGROUND Global growth of Digital Textile Printing (DTP)

Digital textile printing growth in the last 15 years:

Average in Europe: **25%**

BACKGROUND Global growth of Digital Textile Printing (DTP)

Como textile industrial district:

In 10 years, DTP grew from 2% of total production to the current 60-65% (estimated to reach 85% within five years).

In the Como district, DTP is one of the responses to the difficulties in the textile sector linked to the global crisis.

BACKGROUND NITROGEN: a new problem

DTP has caused the emergence of new problems arising from pollution related to the printing process.

Compared to conventional printing processes:

- lower volumes of wastewater with lower COD and colour load
- higher N concentration (urea and ammonium: 150 to 600 mgN/L)
- lower COD/N ratio (about 2 gCOD/gN).

DTP is responsible of an increase of more than 200% of Nitrogen content in wastewater.

The LIFE DeNTreat technology and expected results Cheap removal of N from N-rich wastewater

The LIFE DeNTreat technology and expected results PN/Anammox process

PN - Partial nitritation:

 $2NH_4^+ + 3O_2 \rightarrow 2NO_2^- + 4H^+ + 2H_2O$

50% of N-NH₄⁺ is converted

A - Anammox: $1.02N_2 + 0.26NO_3^- + 0.066CH_2O_{0.5}N_{0.15} + 2.03H_2O_{0.5}N_{0.15}$ $NH_4^+ + 1.32NO_2^- + 0.066HCO_3^- + 0.13H^+$ **Heterotrophic** Cyanobacteria Low O₂ consumption denitrification Max conversion (natural No external carbon dosing CH₃OH efficiency = **88,8%** environment) Lower sludge production Heterotrophic NO₃ NH₄⁺ organisms NOB Anammox[®] AOB Anammox (Nitrite AOB (Ammonia bacteria Oxidising (Ammonia Oxidising Bacteria) Oxidising Bacteria) **Bacteria**) 02 O₂ Nitrification

GRANULE STRUCTURE

Operation in progress at a textile digital printing factory in the Como area

demonstration plant operating with PN/Anammox, TRL7, processing up to 40 m³/day of wastewater at SCR (Stamperia Cassina Rizzardi)

After the project the demo-plant will be installed from time to time in the companies interested in adopting the new process in order to acquire knowledge and detailed specifications useful for the design and construction of the specific equipment intended for the given application.

Change of WWTP influent

after implementing FULL SCALE PN-Anammox process at SCR

Livescia influent characteristics	Situation Situation Situation Situation Scenario with PN/Anammox in operation	
Flowrate (Average daily, m ³ /d)	3800	3800
Total COD (mgCOD/L)	510	465
Total Kjeldahl Nitrogen (mgTKN/L)	75 – 100	35 - 50
Nitrate N (mgN/L)	1.45	1.4
рН	9.41	< 8

Change of KPI at the WWTP

after implementing FULL SCALE PN-Anammox process at SCR results on simulations

Change of KPI at the WWTP after implementing FULL SCALE PN-Anammox process at SCR results on simulations

Change of KPI at the WWTP

after implementing FULL SCALE PN-Anammox process at SCR results on simulations

	LIFE DeNTreat project demonstration plant (40 m ³ /d) effect on total discharge	Full treatment of the wastewater from SCR factory (1200 m ³ /d)
Energy	-2%	-15%
GHG emissions	-6% su N ₂ O	To be determined depending on operational conditions
Chemicals	-4%	-100%
Sludge	-3%	-25%

Change of KPI at the WWTP

after implementing FULL SCALE PN-Anammox process at SCR results from simulations

Categories	WWTP before Anammox		WWTP after Anammox		Difference
	(€/h)	(€/m³)	(€/h)	(€/m³)	%
Power	10.68	0.08	7.17	0.047	- 41.25
Chemicals	46.71	0.31	1.26	0.008	- 97.4
Liquid sludge handling	5.85	0.04	2.99	0.02	- 50
Total cost of treatment	63.24	0.43	11.42	0.075	- 82.5

Without SBR PN-Anammox

0.500 kWh/m³

With SBR PN-Anammox

0.335 kWh/m³

N₂O measurements at Alto Seveso

C/N = 5.08 (3-months average)

N₂O measurements at Alto Seveso

DO: from 0.3 (close to inlet) and 0.9 mg/L (end of aeration) Conventional plants N₂O EF \sim 0.1-7%

$EF = 0.55 \% N-N_2O/TN_{removed}$

N₂O emissions from PN/Anammox

Rimini – November 6th, 2019 - ECOMONDO

Acknowledgements

Politecnico di Milano: Giacomo Bellandi, Simone Visigalli, Glauco Menin

Lariana Depur: Martina Bargna

Thank you for your attention

