

Decentralized innovative treatment of ammonium-rich urban wastewater

PROJECT PRESENTATION

LIFE DeNTreat INFO DAY

March 7th, 2019

SCR - Stamperia di Cassina Rizzardi

Life DeNTreat LIFE16 ENV/IT/000345

The project stems from the need to develop sustainable solutions to deal with the problem of increasing nitrogen concentrations in industrial discharges of digital textile printing.

- ■Phase 1 preliminary study (10.2014 06.2015)
- □ Phase 2 continuous laboratory pilot plant (07. 2015 04.2016)
- □ Phase 3 Life project demonstration plant (07. 2017 06.2020)

For the presentation of the proposal, the project had the support of Unindustria Como, Confindustria Lombardia, Sistema Moda Italia, Comodepur, Consorzio Alto Seveso and Livescia

Life DeNTreat OVERVIEW

Project Number: LIFE16 ENV/IT/000345

Title: Decentralized innovative treatment of ammonium-rich urban wastewater

Acronym: LIFE DeNTreat

Partners: Lariana Depur SpA (IT, Coordinating Beneficiary)

Politecnico di Milano (IT, Partner),

Stamperia di Cassina Rizzardi SpA (IT, Partner)

CITEVE - Centro Tecnológico Industrias Têxtil Vestuário Portugal (P, Partner)

EURATEX - European Apparel and Textile Confederation (BE, Partner)

Duration: 36 months

Starting date: 1st July 2017

Conclusion date: 30th June 2020

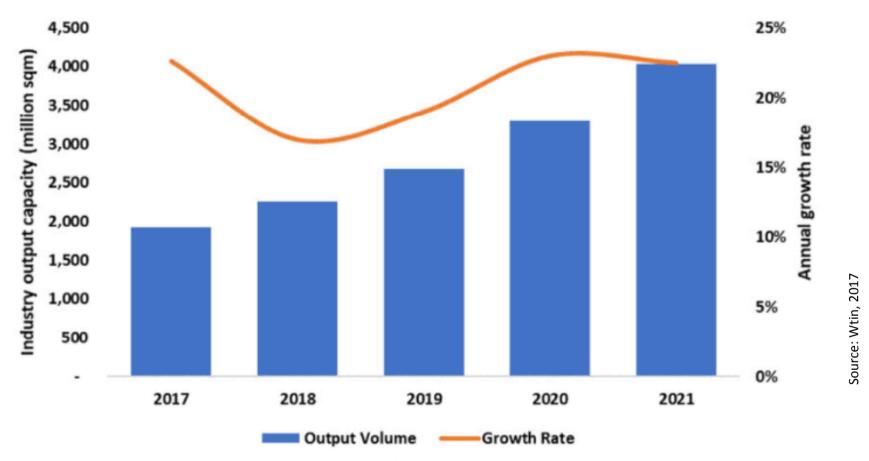
Total project budget: € 1,391,893

Project website: www.life-dentreat.eu

Project Coordinator

Project Partners

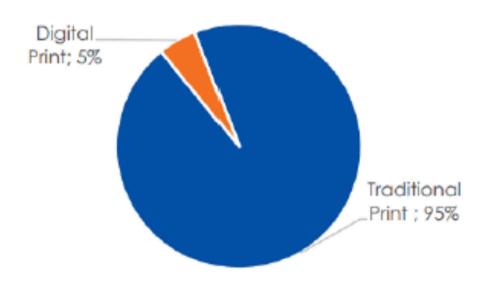
BUDGET


Coordinating Beneficiary's contribution						
Country code	Beneficiary short name	Total costs of the actions in € (including overheads)	Beneficiary's own contribution in €	Amount of EU contribution requested in €		
IT	LARIANA	625,056	250,023	375,033		

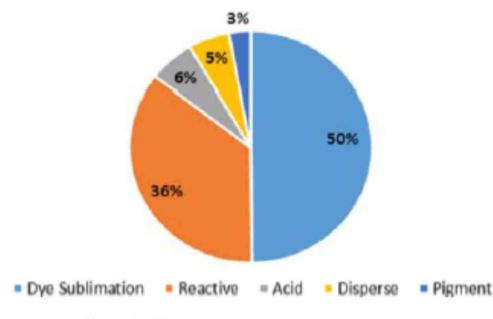
Associated Beneficiaries' contribution					
Country code	Beneficiary short name	Total costs of the actions in € (including overheads)	Associated beneficiary's own contribution in €	Amount of EU contribution requested in €	
PT	CITEVE	100,371	40,149	60,222	
BE	EURATEX	114,639	45,856	68,783	
IT	POLIMI	363,729	145,492	218,237	
IT	SCR	188,098	75,240	112,858	
TOTAL Associated Beneficiaries		766,837	306,737	460,100	

TOTAL All Beneficiaries	1,391,893	556,760	835,133
			-

BACKGROUND Global growth of Digital Textile Printing



- In 2017 ,over 1.9 billion sqm of fabric were digitally printed .
- The annual growth rate of digital textile textile printing is projected to 20 % by volume through the period 2017 -2021.

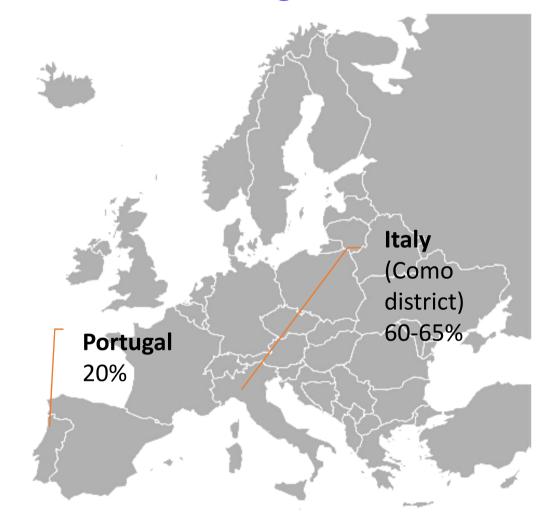

BACKGROUND Global growth of Digital Textile Printing

Worldwide Printed Textile bn m2

Source: "Menderes, Infotrends Digital Textile Forecast 2017-2022

Digital textile inks - Global

Source: Wtin, 2017


- Worldwide, digital textile printing has a market share of about 4-5%.
- Dye-sublimation ink is the most consumed ink type, with a 50 % share.
- Reactive ink follows with a 36 % share.

BACKGROUND Global growth of Digital Textile Printing

Digital textile printing growth in the last 15 years:

Average in Europe: **25%**

BACKGROUND Nitrogen: a new problem

Ink-jet printing requires
a specific pretreatment, where the
reactive dye fixing
agent carrier (urea) is
applied

The specific pretreatment with urea is applied to 100% all over of the textile material

Urea is then completely washed out after printing and fixation

Wastewater produced by DTP processes presents higher N concentration (in the forms of urea and ammonium)

Approximately 150 – 600 mg N/L

This increase correspond to an increase in nitrogen concentration in wastewaters of about 200%

THE PREVIOUS TARIFF

$$T_2 = F_2 + \{f_2 + dv + K_2 [---- (db + Mdb + df + 1/3 df + Mdf)] + da + daN \} V$$
 O_f

daN = cost coefficient of charges for the nitrogen treatment (0,03369 €/m³)

+

Fee per limit derogation (over 100 mgN/l) = 0,75 €/kgN

Wastewater with 200 mgN/l, 1.000 mg COD/l, 100 mgSST/l

Total tariff for ww treatment = 1,5809 + 0,075 = 1,6559 €/m³

Fee for N = $0.03369 + 0.075 = 0.10869 \text{ } \text{/m}^3$

Fee for N = 0,5435 €/kgN

THE NEW TARIFF

AEEGSI - DELIBERAZIONE 28 SETTEMBRE 2017 665/2017/R/IDR APPROVAZIONE DEL TESTO INTEGRATO CORRISPETTIVI SERVIZI IDRICI (TICSI), RECANTE I CRITERI DI ARTICOLAZIONE TARIFFARIA APPLICATA AGLI UTENTI

$$\begin{split} T_{p}^{ATO} &= QF_{p}^{ATO} + QC_{p}^{ATO} + QV_{p}^{ATO} \cdot V_{p} \\ QV_{p}^{ATO} &= Tf_{ind}^{ATO} + \max \left\{ 1; \begin{bmatrix} \%_{COD} \cdot \frac{COD_{p}}{COD_{rif}} + \%_{SST} \cdot \frac{SST_{p}}{SST_{rif}} + \%_{N} \cdot \frac{N_{p}}{N_{rif}} + \\ + \%_{p} \cdot \frac{P_{p}}{P_{rif}} + \sum_{j} \%_{X,j} \cdot \frac{X_{j,p}}{X_{j,rif}} \end{bmatrix} \cdot Td_{ind}^{ATO} \quad \text{Nrif} = 10 \text{ mg/l} \\ \% \text{N} &= 15 \end{split}$$

Wastewater with 200 mgN/l, 1.000 mg COD/l, 100 mgSST/l

Total tariff for ww treatment =

2,1166 €/m³ (+28%)

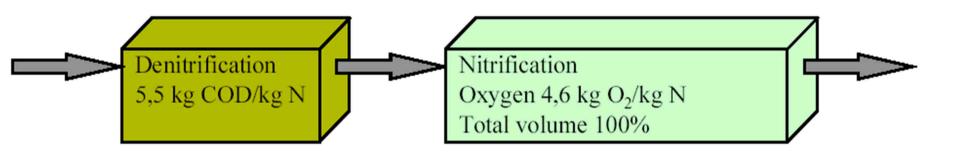
Fee for N =

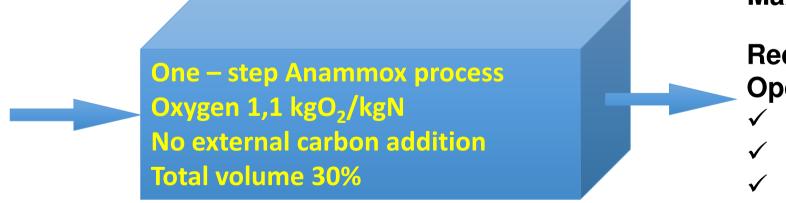
0,9270 €/m³ (8,5 times the previous tarif)

Fee for N =

4.635 €/kgN (8,5 times the previous tarif)

PROJECT AIM


Life DeNTreat aims at demonstrating an on site wastewater treatment module using Anammox (Anaerobic AMMonium OXidation) technology to reduce nitrogen contents of wastewaters resulting from the DTP process and of overall urban ww


The Life DeNTreat tecnologies will allow to:

- obtain a residual N content below 100 mg/l in the wastewater released in the collection system
- easily accomplish <u>Directive 91/271/EEC</u> art.5 requirements asking to ensure that the mini mum percentage of reduction of the overall load entering all urban WWTP in a given area is at least 75% for total nitrogen produced
- assure the <u>respect of residual nitrogen concentration in WWTP discharges</u>, to be maintained below 10 mg/l enabling
- an actual saving of up to 40% in investment and operational costs
- a <u>reduction of the N₂O emissions</u> during biological wastewater treat ment to less than 20% of the currently adopted technologies
- an <u>abatement of the sludge produced</u> as a result of the nitrogen abatement process to less than
 25% of the currently adopted technologies.

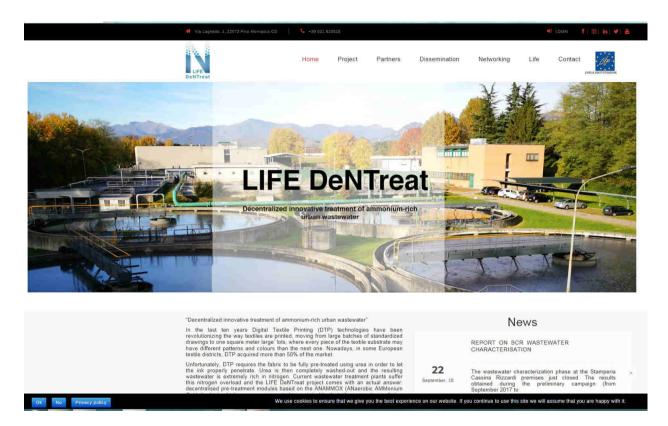
PROBLEM: cheap removal of N from N-rich wastewater

Max conversion efficiency = 88,8% Reduced volume

Opex reduction due to:

- ✓ Low O₂ consumption
- ✓ COD dosing absent
- Lower sludge production

MAIN ACTIVITIES AND TASKS


Α	PREPARATORY ACTIONS
A.1	Characterization of the addressed wastewater and requirements collection
В	IMPLEMENTATION ACTIONS
B.1	Demonstration plant design and construction
B.2	Water treatment demonstration plant operation
B.3	Laboratory tests on digital textile printing company wastewater
B.4	Sustainability, transferability and replication of project results
С	MONITORING OF THE IMPACT OF THE PROJECT ACTIONS
C.1	Environmental, social and economic impacts analysis
D	PUBLIC AWARENESS AND DISSEMINATIONOF RESULTS
D.1	Dissemination of project results
E	PROJECT MANAGEMENT
E.1	Management and reporting to the EC
F 2	After Life N-free
L.Z	ATTEN THE TO THE

PUBLIC AWARENESS AND DISSEMINATION OF RESULTS

Website homepage http://www.life-dentreat.eu

SocialNetworking&SocialMedia

Instagram: https://www.instagram.com/lifedentreat/

Youtube: https://www.youtube.com/channel/UCCxC2kkDoe3slGRd6elfmHQ?disable_polymer=true

Linkedin: https://www.linkedin.com/company/lifedentreat/

Twitter: https://twitter.com/LIFEDentreat

Facebook: https://www.facebook.com/LIFEDentreat/

PUBLIC AWARENESS AND DISSEMINATION OF RESULTS

Newsletter

Sign Up
Newsletter
at the website

Thank you

CONTACT

info@life-dentreat.eu

Martina Bargna Giovanni Bergna

Via Laghetto 1 - 22073 Fino Mornasco (CO)
Tel. ++39 31 920518 - Fax ++39 31 921880
martinabargna@lariana.it
giovannibergna@lariana.it

